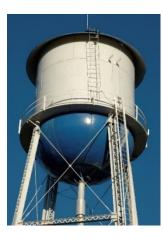
Coatings based on Trilene[®] EPDM Rubber

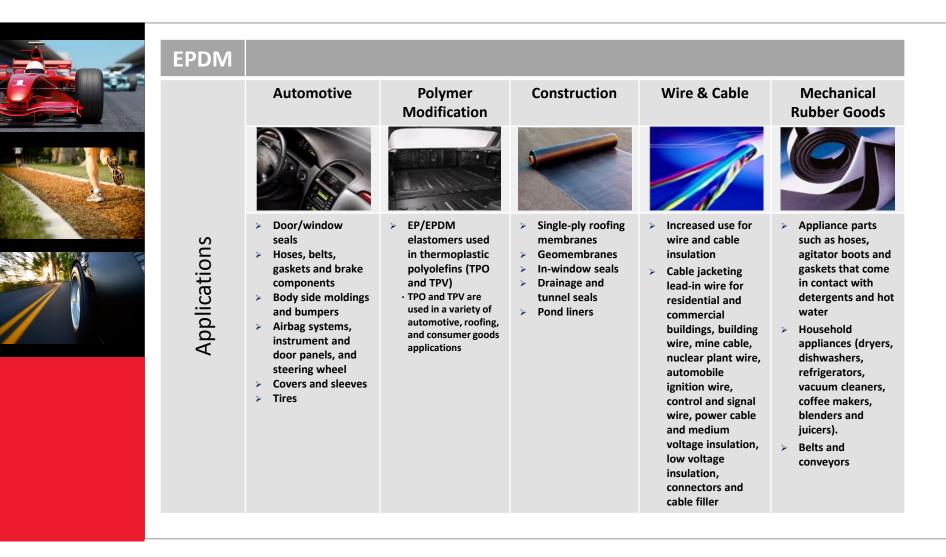
Technology and Applications

Prepared by: Dr. Greg Brust Greg Ross

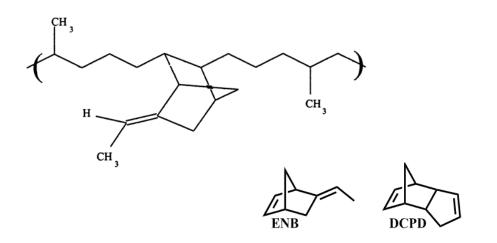

February 2017

Trilene[®] in Coatings Outline

- What is EPDM Rubber and Where is it Used
- Advantages of Coatings from EPDM Rubber
- Technology & Applications
- Water-dispersed EPDM Coating Technology Development
- EPDM Grades for Powder Coating
- Wrap-up



Lion Elastomers is a leading manufacturer of synthetic rubber products. Our products represent the highest performing, highest quality EPDM and SBR rubber materials available anywhere in the world. The company operates world-class EPDM and SBR manufacturing facilities in Geismar, Louisiana and Port Neches, Texas.


EPDM Rubber Key End Markets and Applications

General Description & Application for EPDM

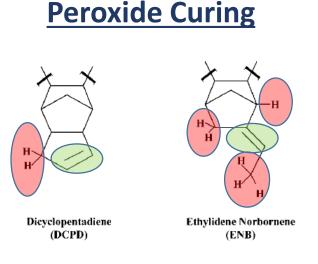
EPDM (Ethylene Propylene Diene Terpolymer*)

Compared with other rubbers, many special properties of EPDM are derived from the saturated backbone structure. Primary application areas for EPDM include Automotive, Building & Construction, Wire & Cable, and Consumer Products.

* In ASTM nomenclature system, M designates a saturated polymer backbone. In contrast, R designates polymers that contain unsaturated backbone, e.g. NR, SBR.

EPDM Properties Desired in Coating Applications

- ✓ Oxidation, UV and Ozone resistant
- Hydrophobic and water proof
- Low moisture permeability
- ✓ Flexibility, especially at low temperature
- Excellent electrical properties


Adhesion to a wide variety of surfaces

Grades	E/P Ratio	Wt. % Diene	M _w *	Viscosity**
Trilene [®] 65	50/50	10.0 DCPD	47,000	177,000
Trilene 67	46/54	9.5 ENB	39,000	128,000
Trilene 77	74/26	10.5 ENB	27,000	102,000

* Molecular weight derived from kinematic viscosity measurements.
M_w is weight average molecular weight.
** Viscosity is Brookfield (cP) at 100°C.

Curing of Trilene[®] Polymer: Free Radical Curing

- 1) Thermal decomposition of peroxide ROOR' Heat RO+ + •OR'
- 2) Hydrogen abstraction from polymer

3) Crosslink formation (coupling)

Polyme

Curing of EPDM relies on free radical crosslinking chemistry. Peroxide generates polymer free radicals either by adding to a double bond or through the abstraction of Hydrogen atoms, often adjacent to the double bond (α -H). Curing through UV follows the same free radical crosslinking chemistry. The only difference is the source of free radicals. Omnirad[®] 819 (BAPO), for example, has the best absorption of natural sunshine and allows curing.

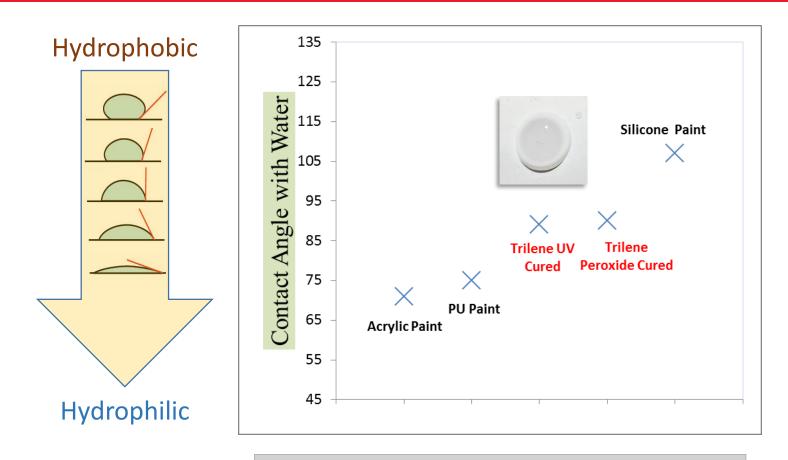
BAPO: Bis-Acyl-Phosphine Oxide, Omnirad[®] 819, Peak adsorption 371, 400 nm, CAS# 162881-26-7

Typical Ingredients of Trilene[®] Solvent-based Coating

Typical raw materials cost: US \$18-22 / Gallon for roof coating formulation

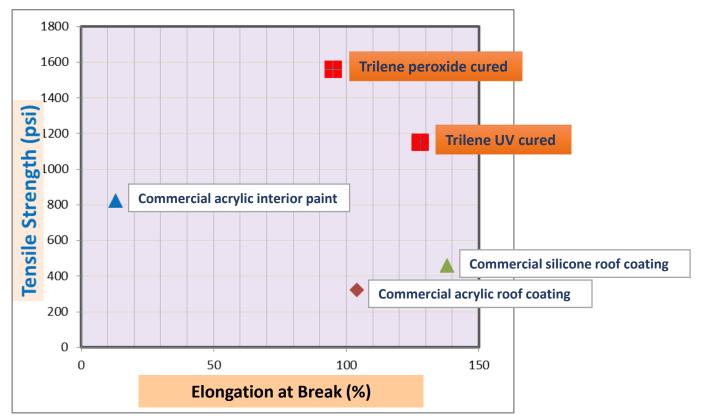
Starting Formulations - Peroxide and UV Curing

Material	Function	Supplier	Peroxide	UV
Part A				
Trilene [®] 65	Function	Lion Elastomers	32.92	28.37
Ricon [®] 156	Co-agent	Cray Valley	2.74	2.36
SR-350	Co-agent	Sartomer	0.69	
Mineral Spirit	Solvent	Lard Oil	20.67	16.55
SIH6115.0	Exempted Solvent	Gelest	10.00	21.28
Disper BYK [®] 118	Dispersant	ВҮК	1.10	0.70
Ti-Pure [®] R-706	White Pigment	Chemours	8.23	9.46
Coupsil [®] 6508	Reinforcing Filler	Evonik		9.46
Ultrex [®] 96	Reinforcing Filler	BASF	16.46	
Omnirad [®] 819	Photoinitiator	IGM Resins		2.36
12% Co Ten-Cem	Catalyst	OMG	0.27	
18% Zn Ten-Cem	Catalyst	OMG	0.27	
Toluene	Co-solvent	Various		9.46
Part B				
Peroxan [®] PIN	Curative	Pergan	1.65	
Mineral Spirit	Solvent	Lard Oil	5.00	
Total			100	100
	Solid Content (w/w%)		64.3%	52.7%
	VOC (g/L)		243	247
	Broo	kfield Viscosity (cP)	4600	5400
		Specific Gravity	0.946	0.955



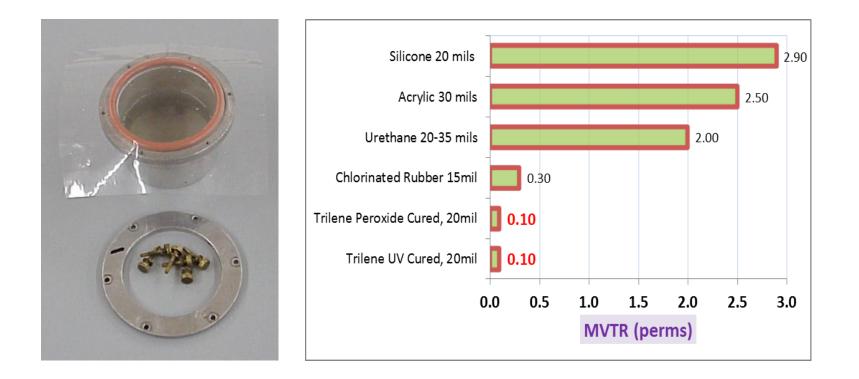
Typical Performance Properties of Coatings

Characteristic	UV/Sunshine Cured	Peroxide Cured	Testing Standard
Solid Content	Up to 80 wt%	Up to 80 wt%	ASTM D3960
VOC	<250 g/L	<250 g/L	ASTM D3960
Specific Gravity	~0.94	~0.94	ASTM D1475
Brookfield Viscosity (25°C)	4000-9000 сР	3000-9000 сР	ASTM D2196
Tensile Strength	800-1200 psi	1200-1600 psi	ASTM D412
Elongation at Break	120-140 %	80-100 %	ASTM D412
Dry-to-Touch (25°C)	30-60 min	3-4 hours	ASTM D1640
Dry-to-Handle (25°C)	8 hours	16 hours	ASTM D1640
Paint Pot Life (25°C)	N/A	> 2 hours	
Adhesion to substrates	OK with aged EPDM, TPO, w typical acrylic or	ASTM D4541	
Moisture Permeability	< 0.2 perm	< 0.2 perm	ASTM E96
Paint Shelf Life (25°C)	3 years	1 year	


Hydrophobicity – Contact Angle Test ASTM D7490

Trilene[®] based coatings are more hydrophobic than acrylic and polyurethane(PUR) paints.

Mechanical Strength – Tensile Test ASTM D412

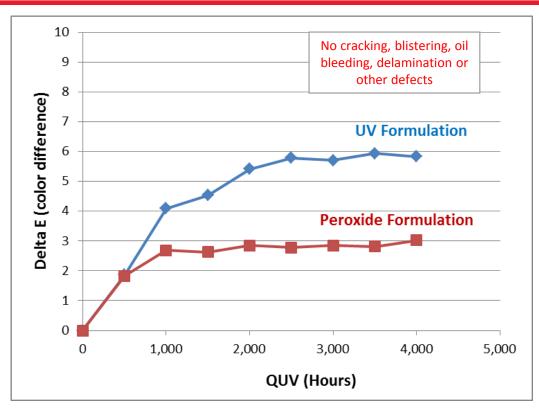


* Comparison based on commercial products dried 7 days.

Trilene[®] based coating showed better mechanical strength than alternative roof coatings.

Water Moisture Vapor Resistance (MVTR) ASTM E96

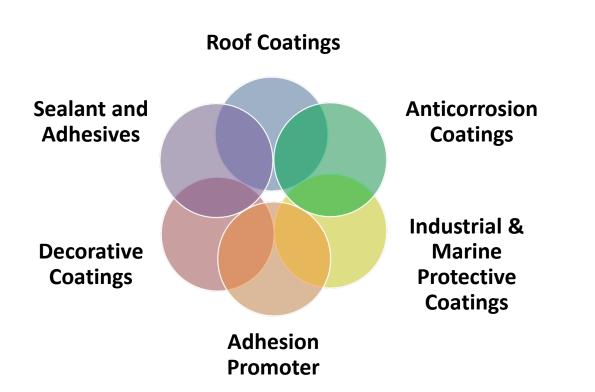
Trilene[®] based films have very low moisture vapor transmission rates compared with other materials. MVTR can be adjusted through formulation, if desired.



Adhesion to Substrates and Primers ASTM D4541

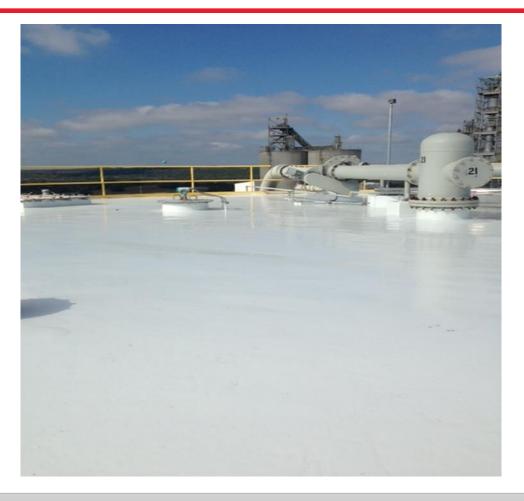
Substrate	ASTM D4541 Pulling Test (psi)	Results
Aged EPDM Sheet (pre-cleaned with NaOH)	2300	ОК
Aged EPDM Sheet (No Pretreatment)	2150	ОК
New TPO Sheet	1350	ОК
Aluminum Panel (Q Panel)	1420	ОК
Cold Rolled Steel	2200	ОК
Wood Panel	1900	ОК
Concrete Panel	1600	ОК
Primer coatings		
Master Chem KILZ2	2100	ОК
Master Chem KILZ Complete	2300	ОК
Behr 436	2250	ОК
Roman Rx35	2450	ОК
Glidden Gripper	2000	ОК
Zinsser B.I.N.	2240	ОК
Zinsser 1.2.3	2260	ОК

Weatherability – QUV Aging Test ASTM D4587



* Based on Trilene-based roof coating peroxide formulation coated to 15 mil DFT. No UV absorbers used. QUV lamp peaks at 340nm with output of 0.89 w/m^2 . Color was compared to a reference samples not exposed to QUV.

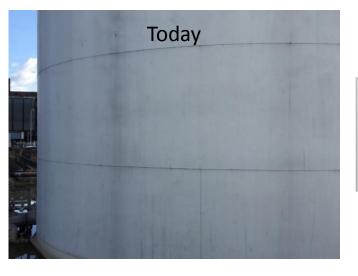
Trilene[®] based roof coatings showed good stability for >4000 hours under QUV accelerated aging.



Potential Coating Applications

Roof Coating: Field Application

DURABILITY, FLEXIBILITY, AND WATER RESISTANCE


Protective Coating: Case Demonstration

Before Coating

After Coating

Demonstrating a Trilene[®] based protective coating. Coating still performing after 4-years in service.

Water dispersed EPDM

- Solvent based coatings based on Trilene[®] EPDM have a relatively high VOC demand.
- Some applications require waterborne formulations for environmental and/or health concerns.
- A dispersion of Trilene EPDM in water has been developed. The dispersion provides an approach to a stand alone coating, or a unique additive to current latex products.
- Typical properties of the EPDM dispersion
 - 45-55% by weight solids content
 - Pourable viscosity at room temperature
 - Formulated with common ingredients
 - Water clean-up
 - Peroxide or UV curable
 - Compatible with other water-based resins

Solvent solution

Neat

Trilene[®] Grades for Powder Coating

- > A powder version (Freeflow[®]) is available for some grades;
- Freeflow version is achieved by adsorbing Trilene EPDM onto 30-32% silica filler (or other powder surface);
- Can be fast cured with temperature using a sulfur or peroxide system, thus a powder coating is achievable;
- > A powder coating with flexibility is the major advantage.

Grades	Wt. % Diene	E/P Ratio	Density (g/cc)
Trilene 65 FF	10.0 DCPD	50/50	1.00
Trilene 67 FF	9.5 ENB	46/54	0.86

Trilene 65 C-30 is 30% active Trilene 65 adsorbed on Burgess KE silane-treated, calcined clay.

Wrap-up

- Solvent-based coatings based on low molecular weight EPDM elastomer have been successfully developed using both peroxide and photoinitiator (UV) crosslinking.
- Properties and advantages of EPDM coatings have been demonstrated.
- EPDM Coatings offer potential in various coating applications, including roof, protective, and decorative coatings.
- ✓ Water dispersed EPDM technology has been developed.
- ✓ Grades for powder coatings are also available.

Thank you.

